REVERSE SEA TO PREDICT FLANKING TRANSMISSION IN TIMBER FRAMED CONSTRUCTIONS

Jean-Luc Kouyoumji(a), Gerard Borello(b), Heinz Ferk(c)

(a) FCBA, Bordeaux, jean-luc.kouyoumji@fcba.fr
(b) InterAC, Toulouse, France
(c) Graz University of Technology, Austria
Content

• Industrial need at the design stage
• Prediction of flanking transmission
• Measurement
• Use of EN12354 Model
• Use of reverse SEA
• Field transmission loss prediction
Building system: CLT
Building system: CLT

Acoustics for the 21st Century...
Building system: CLT
Industrial need

- Design the structure, meet all criteria need and all regulations
- Master all design fields
- Compose a structure that don’t over estimate acoustic need
- Use as much as possible simple products for assembly
- Create an acoustic design tool
- Agree with control body on the accuracy
- Validate performance at the design stage
Design process

- **Building elements**
 - Walls, floors, windows, ...

- **Construction Build-ups**
 - Building elements + Junctions

- **Calculation method is based on SEA, EN12354**
Design process

• **Need of inputs**
 - Measurements only,
 - walls, floors,
 - Junctions

\[
2D, R, Ln \\
3D, Dv,ij Kij \\
CLF and DLF
\]

• **Calculation method is based on SEA, EN12354**
Measurement Strategy

- Measure D_{vij} or K_{ij} on core structure
 - Using mapping of vibration reduction

- Measure CLF and DLF
 - Using Reverse SEA
Measurement Strategy

- Measure Dvij or Kij on final structure
 - Using mapping of vibration reduction

- Measure CLF and DLF
 - Using Reverse SEA
Measurement

Acoustics for the 21st Century...
Measurement
Reverse SEA Methodology

\[
\begin{pmatrix}
- (\eta_{1d} + \eta_{12} + \cdots + \eta_{1n}) \\
\eta_{12} \\
. \\
. \\
\eta_{1n}
\end{pmatrix}
\begin{pmatrix}
\eta_{21} \\
- (\eta_{2d} + \eta_{21} + \cdots + \eta_{2n}) \\
. \\
. \\
- (\eta_{nd} + \cdots + \eta_{nn})
\end{pmatrix}
\begin{pmatrix}
E_1 \\
E_2 \\
. \\
. \\
E_n
\end{pmatrix}
= \begin{pmatrix}
- W_{inj,1} \\
\omega_0 \\
- W_{inj,2} \\
\omega_0 \\
. \\
. \\
- W_{inj,n} \\
\omega_0
\end{pmatrix}
\]
Measurement reduction
Measurement reduction
Measurement reduction

Acoustics for the 21st Century...
Measurement reduction

Acoustics for the 21st Century...
Measurement reduction
Measurement reduction

Acoustics for the 21st Century...
Measurement reduction
Measurement reduction
Measurement reduction
Field transmission loss prediction

Acoustics for the 21st Century...
Insulation Calculation

- Combination of all paths

$$R' = -10\log \left[10^{-\frac{R}{10}} + \sum_{ij} 10^{-\frac{R_{ij}}{10}} \right]$$

$$D_{nT} = R' - 10\log \frac{0.16 V}{T_0 S_s}$$
Insulation Calculation $R_{ij}, D_{n,TA}$

$D_nTA = 64 (-2 ; -4)$ dB

R_{dd}, Direct sound transmission loss
$R_{w} = 70 (-2 ; -8)$ dB red line

R_{ff}, flanking sound transmission loss
R_{fd}
R_{df}

Global sound transmission direct and flanking

Acoustics for the 21st Century...
Conclusion

- Flanking transmission prediction with two strategies for measurement is undergoing
- A prediction model will be set using specific junction characteristics
- Using reverse SEA will help in predicting $D_{v,ij}$
- With the prediction tool and the growing expertise the designer will be more precise for a more competitive use of products
Thank you for your attention